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Acoustic vehicle speed estimation from single
sensor measurements

Slobodan Djukanović, Member, IEEE , Jiřı́ Matas, Member, IEEE , and Tuomas Virtanen, Fellow, IEEE

Abstract— The paper addresses acoustic vehicle speed estimation using single
sensor measurements. We introduce a new speed-dependent feature based on
the attenuation of the sound amplitude. The feature is predicted from the audio
signal and used as input to a regression model for speed estimation. For this
research, we have collected, annotated, and published a dataset of audio-video
recordings of single vehicles passing by the camera at a known constant speed.
The dataset contains 304 urban-environment real-field recordings of ten different
vehicles. The proposed method is trained and tested on the collected dataset.
Experiments show that it is able to accurately predict the pass-by instant of a
vehicle and to estimate its speed with an average error of 7.39 km/h. When the
speed is discretized into intervals of 10 km/h, the proposed method achieves
the average accuracy of 53.2% for correct interval prediction and 93.4% when
misclassification of one interval is allowed. Experiments also show that sound
disturbances, such as wind, severely affect acoustic speed estimation.

Index Terms— log-mel spectrogram, neural network, speed estimation dataset,
support vector regression, vehicle speed estimation

I. INTRODUCTION

Traffic monitoring (TM) systems collect various traffic data
on the use and performance of roadway systems. The data
include estimates of vehicle count, speed and class, as well as
of vehicle length, weight and identity via registration plates
[1]. Based on the collected data, improvements can be made
in the performance of roadway systems, transportation safety,
law enforcement and prediction of future transportation needs.

Reliable automatic speed detection of moving vehicles is
crucial to traffic law enforcement in most countries, and is
considered an important tool in decreasing traffic accidents and
fatalities. For example, [2] reports that it leads to a reduction of
”11% to 44% for fatal and serious injury crashes”. Compliance
to speed limits is currently monitored with speed enforcement
cameras which use Doppler radar, Laser Infrared Detection
and Ranging (LIDAR), stereo vision or automatic number-
plate recognition. Although these devices usually perform
well, they are expensive and thus cannot be widely used.

Acoustic-based TM offers several advantages with respect
to other technologies, such as low price, low amount of
energy required for operation, low storage space needed, low
installation and maintenance costs to name a few [1]. Acoustic-
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based speed estimation can be divided into approaches based
on single microphone measurements [3]–[10] and those based
on microphone arrays [11]–[13]. When a single microphone
is used, wave propagation effects are exploited to determine
the source movements with the following three assumptions
i) vehicle is a point source [3], [4], ii) vehicle’s sound
has stationary characteristics and can be modeled by an
autoregressive moving average model [4], and iii) vehicle
produces a pure tone [3]. These assumptions, however, are
only partially satisfied, which degrades the performance of
estimation algorithms based on them when applied to field
data [5]. In addition, Cevher et al. in [5] argue that signal
frequency information in Doppler-based speed estimation [6]
is not useful when a single microphone is used. Authors in
[7] focus on detecting changes of speed, i.e., they use several
machine learning methods (support vector machine, random
forests, neural networks) to detect accelerating, decelerating,
and maintaining stable speed of a vehicle. Method [8] uses
the pass-by sound to classify the speed and gear position of
a vehicle. The reported speed classification results, obtained
using gradient boosting and correlation matrix optimization,
are near perfect (over 99%) when the speed is discretized
between 10 and 5 km/h, and very high (over 90%) with smaller
discretization intervals. Method [9] estimates the speed using
a neural network and a set of features including the engine
firing rate (strongest tone of the signal with frequency below
250 Hz), the envelope of the short-time power spectrum of the
signal, mel frequency cepstral coefficients and zero-crossing
rate. Estimating the speed using sound emissions recorded by
an on-board microphone has also been tackled in the literature.
For example, in [10], wavelet packet analysis (WPA) is applied
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on sound emissions and the speed is estimated using a neural
network fed by norm entropy of subsignals from WPA. The
reported average prediction rate is 97.89% with 1.11 km/h
mean absolute error and 2.11% relative error.

Microphone-array based approaches exploit the correlation
of signals coming from separate microphones. Authors in
[11] propose an estimation technique based on the maximum
likelihood principle. No assumptions are made regarding the
acoustic signal emitted by a vehicle, which has the advantages
of bypassing troublesome intermediate delay estimation steps
with respect to competing methods. In [12], a nonlinear least
squares method for speed estimation is proposed, based on
time-delay-of-arrival estimates from multiple microphones. A
quasi-Newton method is used to improve the computational
efficiency. Estimation of speed and wheelbase of two-axle
vehicles is addressed in [13]. The method assumes that the
pass-by sound is mainly composed of tyre/road noise. Micro-
phone array considered in [13] contains two microphones. The
absolute difference between the true and estimated speeds is
below 5 km/h for 75% of all considered vehicle runs.

One of the main challenges to acoustic vehicle speed esti-
mation is a lack of labeled data. Datasets used in experiments
in the aforementioned studies are very small. For example,
in [5], ten audio recordings (nine different vehicles) were
used. In [6] and [11], only seven recordings were used (three
cars, a bus and a motorbike). In [9], two different cars were
used, four different speeds per car, two recordings per speed.
Experiments in [8] used the sound ”of an American-built car
driving multiple identical laps on a closed parking lot”, without
specifying car manufacturer, speed and the number of laps.
In [13], one recording of 240 seconds, containing 22 and 2
motorbikes, was used. In [10], one vehicle was used, with
speeds from 30 km/h to 80 km/h, 1 km/h increment.

This paper addresses acoustic speed estimation using mea-
surements from a single sensor. We propose a method that is
able to i) accurately detect passing vehicles and to ii) estimate
their speed with an average error of 7.39 km/h. A dataset of
304 audio-video recordings of vehicles passing by the sensor
at constant speed is collected, annotated, and made publicly
available. It is suitable for both video- and audio-based vehicle
speed estimation. To the best of our knowledge, this is the most
extensive annotated dataset for vehicle speed estimation.

The dataset is presented in Section II. Speed estimation
method is presented in Section III and experimentally verified
in Section IV. Section V concludes the paper and gives future
research directions.

II. DATASET

We have collected a dataset of on-road recordings of single
vehicles passing by the camera. Ten different vehicles were
used resulting in a total of 304 audio-video recordings, each
one containing a single drive of a single vehicle. The main
goals set before compiling the dataset were: (1) recordings
should be made in an urban environment, (2) recordings have
to be real field ones, (3) vehicles should be as diverse as
possible in terms of manufacturer, production year, engine
type, power and transmission, (4) all vehicles have to be

Fig. 1. Top: Google map screenshot of the recording site. Our road
(green line, 622 m long) is 90 m away from the main road Podgorica-
Petrovac (Montenegro). Middle: Screenshot of the recording setup.
Bottom: Vehicle moving at a constant speed v on a straight path. d(t)
is the distance between a vehicle and the camera at time instant t,
whereas dCPA is the distance at the closest point of approach (CPA).

equipped with the cruise control system, so that speed is
maintained stable during the vehicle’s pass by.

In the context of acoustic vehicle speed estimation, goals (1)
and (2) imply that in addition to the pass-by sound of vehicles
used in the experiment (prominent sound source), audio files
can contain sounds of other nearby vehicles and environmental
sounds (e.g., wind, bird chirps, crickets), which are considered
as noise in the estimation.

The dataset (recordings with annotations), referred to as
VS10, is available for download at http://slobodan.
ucg.ac.me/science/vse/. For convenience, we have
extracted audio files and provided them separately for down-
load. These audio files represent the material on which our
experiments were conducted and results presented in Section
IV. More details on preparing the dataset follow.

A. Dataset collection and preprocessing
The dataset was recorded on a local road (green line in Fig.

1 (top)), 622 m long, located 90 m away from the main road
Podgorica-Petrovac in Montenegro. This road is selected for
the following reasons: i) it is long enough so that stable speeds
can be achieved prior to the pass-by instant, ii) it is isolated
enough to allow measurements without too many disturbances,
and iii) it is close to other roads so that dataset creation goals
(1) and (2) are fulfilled.

http://slobodan.ucg.ac.me/science/vse/
http://slobodan.ucg.ac.me/science/vse/
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Fig. 2. Histogram of VS10 speeds calculated at 20 equal-width bins.

For dataset recording, we used a GoPro Hero5 Session
camera. It was installed by the road, at a distance of around
0.5 m from the road and at a height of around 1.2 m (see Fig. 1
(middle)). The camera was installed in various positions (both
sides of the road and different angles with respect to the road)
in order not to be sensitive to the actual camera position1.
The recording sessions (one session per day) took place from
December 2019 to December 2020. Ten vehicles were used, as
listed in Table I. The number of recording sessions per vehicle
is given in the sixth column of Table I.

The speed of vehicles ranges from 30 to 105 km/h, with the
exact values given in the rightmost column in Table I. Below
30 km/h, the cruise control cannot be used with the selected
vehicles (for Peugeot 3008, even below 40 km/h). Above 105
km/h, the selected road did not allow for stable and secure
measurements. For each vehicle, we have adopted a variable
speed step, from 1 to 3 km/h, so that practically all speeds from
30 to 105 km/h are included in the VS10 dataset. Histogram
of speeds is given in Fig. 2. The reported speeds are stable2

at least 3 seconds before and after the pass by. Outside that
6-second interval, minor speed variations are possible.

Each recording in VS10 contains a single drive of a single
vehicle. The original recordings were cut into 10-second video
files3 (using the Format Factory application) so that the pass-
by instants of vehicles are around the middle of the file length.
Each video file is accompanied by an annotation text file
which contains the speed of the vehicle and its pass-by-camera
instant. We measured the relative time from the beginning
of the file, given in seconds with a two-decimal precision.
Precise annotations were obtained by visual screening, i.e., by
identifying a video frame when the vehicle starts to exit the
camera view, which approximately corresponds to the closest
point of approach (CPA) (see Fig. 1 (bottom)).

For the purpose of acoustic vehicle speed estimation, we
extracted audio files (44100 Hz sampling rate, WAV format,
32-bit float PCM) from the corresponding video files using
Audacity, a free open-source application for recording and
editing sound. A signal containing the sound of a vehicle
passing by the camera is presented in Fig. 4 (top).

The VS10 dataset contains 10 folders, with 304 video files
in total. Each folder corresponds to one vehicle, i.e., it contains
10-second video files (MP4 format, full HD resolution, 30 fps)
and annotations for that vehicle. The extracted audio files, used

1Sample video files of each vehicle can be seen at http://slobodan.
ucg.ac.me/science/vse/.

2The speed is maintained stable by the on-board cruise control, all vehicles
were equipped with.

3Authors in [7] also segment the recorded material into 10-second files.

in experiments, are also available for download via a separate
link. In addition to 304 audio files containing the sound of
vehicles passing by the camera, we provide additional 36 audio
files (without corresponding video) containing only environ-
mental noise (no vehicles passing by the camera), recorded
using the same setup. The additional files are included to
improve regression of introduced speed estimation feature.

Naming convention for dataset files includes the vehicle
name and the speed. For example, Peugeot307 79.mp4,
Peugeot307 79.wav and Peugeot307 79.txt repre-
sent the names of video, audio and annotation files, respec-
tively, of Peugeot 307 driven at 79 km/h. Additional no vehicle
audio and annotation files are named e.g. NoCar 021.wav
and NoCar 021.txt.

Finally, note that the considered experimental scenario
is limited in the sense that drives of single vehicles were
recorded. In a large-scale city traffic scenario, several vehicles
can simultaneously pass by the microphone and the recorded
sound can contain several overlapping components. In that
case, sound-based speed estimation cannot be performed with-
out preprocessing the recorded sound, i.e., without proper
separation of sound components. This issue is beyond the
scope of this paper.

B. Train-validation split

The proposed method will be evaluated using 10-fold cross
validation. To that end, we split files in each folder to training
and validation files, 80%–20% split. The split procedure is as
follows: i) sort the speeds into ascending order, ii) divide the
sorted speeds into batches of 5 speeds, iii) randomly select
one speed in each batch to be used for validation, the other
ones for training. This strategy ensures that low-, medium-
and high-speed audio are used in both training and validation.
Each folder contains a file Train valid split.txt with
labels train or valid associated with each audio.

III. SPEED ESTIMATION

Our speed estimation approach is based solely on audio
obtained from a single microphone (in our case, audio is
extracted from video). We introduce a new speed-dependent
feature that will be predicted from the input audio (Section
III-A). Vehicle speed is estimated via a regression approach
having as input the predicted feature (Section III-B).

A. Speed estimation feature

Our feature is based on the amplitude attenuation factor of
the sound signal [4]

σ(t) =
1√

v2(tCPA − t)2 + d2CPA

, (1)

where v represents speed, t time variable, tCPA the CPA
instant, and dCPA distance at CPA. Attenuation σ(t) for speeds
v = [30, 55, 80, 105] km/h, tCPA = 5 s and dCPA = 1.5 m is
presented in Fig. 3. Observe that the σ(t) shapes are close to
each other, especially for higher speeds, which renders σ(t)
unreliable for speed estimation.

http://slobodan.ucg.ac.me/science/vse/
http://slobodan.ucg.ac.me/science/vse/
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TABLE I
VS10 VEHICLES AND SPEEDS

Vehicle Engine
type

Power
(kW) Transmission Prod.

year
Record.
sessions Speeds (km/h)

Citroen C4 Picasso Diesel 88 Manual 2015 1 35, 38, 41, 44, 48, 51, 54, 57, 59, 63, 65, 68, 72, 74, 78, 80, 83, 85, 87, 92, 94, 96,
101

Mazda 3 Skyactive Petrol 74 Manual 2015 1 30, 33, 35, 38, 40, 43, 45, 47, 50, 52, 55, 57, 60, 62, 64, 67, 70, 72, 75, 79, 81, 84,
86, 88, 90, 92, 94, 96, 99, 101, 103, 105

Mercedes AMG 550 Petrol 350 Automatic 2006 3 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 55, 58, 60, 62, 65, 67, 70, 73, 75, 78, 80, 82,
85, 87, 90, 93, 95, 98, 100, 105

Nissan Qashqai Diesel 81 Manual 2018 1 35, 38, 40, 42, 45, 48, 50, 53, 55, 58, 60, 61, 64, 65, 68, 70, 73, 75, 78, 80, 82, 85,
88, 90, 93, 94, 96, 98, 102

Opel Insignia Diesel 96 Automatic 2010 1 31, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 64, 66, 68, 70, 72, 73, 76, 78, 80, 83, 86,
89, 91, 94, 97, 100

Peugeot 3008 Diesel 84 Automatic 2013 2 40, 43, 45, 47, 50, 52, 54, 55, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 74, 75, 78, 80,
83, 85, 87, 89, 90, 92, 95, 97, 100

Peugeot 307 Diesel 100 Manual 2007 1 30, 33, 35, 38, 40, 43, 45, 47, 48, 50, 53, 56, 59, 60, 63, 66, 69, 72, 73, 76, 79, 82,
85, 88, 91, 94, 97, 101, 103

Renault Captur Diesel 66 Automatic 2015 1 30, 33, 36, 38, 40, 41, 44, 46, 47, 48, 50, 52, 56, 58, 60, 63, 66, 68, 70, 72, 76, 78,
80, 83, 86, 88, 90, 92, 94, 97, 98, 100, 102

Renault Scenic Diesel 96 Manual 2010 2 30, 35, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 57, 60, 62, 64, 66, 68, 70, 71, 72, 74,
75, 77, 80, 82, 84, 86, 87, 90, 91, 94, 95, 98, 101

VW Passat B7 Diesel 77 Manual 2011 2 30, 35, 39, 40, 42, 45, 47, 49, 50, 52, 54, 55, 57, 60, 61, 64, 65, 67, 70, 71, 72, 73,
75, 78, 80, 81, 82, 85, 88, 90, 91, 94, 96, 98, 100

Fig. 3. Left: Amplitude attenuation σ(t) of the sound signal. Right:
Proposed feature η(t) for α = v and β = 0.05. tCPA = 5 s.

We propose to modify σ(t) as follows:

η(t) =
α

βv2(tCPA − t)2 + d2CPA
. (2)

Parameter α controls the vertical extent of η(t), whereas β
affects its width. We will refer to η(t) as modified attenuation
(MA), and η(t) for v = [30, 55, 80, 105] km/h, dCPA = 1.5 m,
α = v and β = 0.05 are presented in Fig. 3 (right). Clearly, α
and β provide much clearer distinction between different η(t)
profiles than it is case with σ(t).

The η(t) feature will be predicted using the log-mel spectro-
gram (LMS). LMS represents the most common feature used
in various acoustic pattern classification tasks [14]. It yielded
excellent results in predicting clipped vehicle-to-microphone
distance used for vehicle counting [15], [16].

B. Proposed method

The proposed methodology for acoustic vehicle speed es-
timation is illustrated in Fig. 4. From the input audio signal
(top plot), LMS is calculated (second plot). Based on LMS, the
proposed speed estimation feature, MA, is predicted in a su-
pervised fashion (third plot). Each MA point is predicted using
a time frame of LMS samples, as presented with the shaded
area in the second plot. The pass-by instant tPB is predicted by
maximizing the MA profile. For speed estimation, we consider

only the MA values around tPB (yellow background in the third
plot), the other ones contribute much less. Vehicle speed is
estimated using a regression model which takes the windowed
MA samples as input.

The block diagram of the proposed method is presented in
Fig. 5 (top). Block Feature extraction outputs MA prediction
file-wise. Speed estimation is carried out using the predicted
MA (block Speed estimation).

Fig. 4. Proposed methodology for acoustic vehicle speed estimation.
Top: Original audio signal. Second plot: Log mel spectrogram of audio.
Third plot: Supervised MA feature prediction based on LMS. Bottom:
Speed is estimated using the predicted MA around its maximum.

Detailed presentation of Feature extraction is given in Fig.
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Fig. 5. Top: Block diagram of the proposed supervised speed estimation
method. Middle: MA feature extraction in detail. Bottom: Speed estima-
tion in detail. tPB and MAw represent the predicted pass-by instant of
vehicle and the windowed MA feature, respectively.

5 (middle). First, LMS of audio signal is calculated. Then, the
MA feature is predicted based on LMS using a fully-connected
neural network (NN). NN outputs a single value prediction
of MA at a given time instant, η̃(t). To take into account
time dependence between adjacent η(t) values, η(t) will be
predicted using LMS samples from time interval [t−Q, t+Q]
as features (shaded area in Fig. 4, second plot).

In the Speed estimation block, we first detect a vehicle
passing by the sensor. One detection approach is to locate peak
in the sound energy [15]. However, peaks in energy can also
be induced by other sound sources, such as vehicles in the
nearby roads, machines in construction sites, natural sounds
(wind, birds, crickets). Bearing this in mind, we adopt the
MA peak magnitude to be in direct proportion with the speed,
which enables vehicle detection based on maximum of the
predicted MA. Setting α = v in (2) represents a reasonable
choice in that regard, which yields the MA peak magnitude

η(tCPA) =
v

d2CPA
. (3)

Based on this rationale, we detect vehicle by maximizing the
predicted MA profile, i.e., the pass-by instant tPB will be
predicted as the position of MA maximum. Setting α = v
in (2) implies that for audio files with no vehicles passing by
the sensor, the MA profile is flat and equal to zero.

As features for speed estimation, we select MA samples
around tPB, i.e., we carry out MA windowing, since the MA
samples far from tPB contribute much less. Selection of the
window width, NMA, is discussed in Section III-C.

Speed estimation is carried out using ε-support vector
regression (ε-SVR) due to relatively small size of the dataset
and small number of parameters to optimize. The ε-SVR
parameters are C (penalty of the error term) and ε (width of
the ε-insensitive zone used to fit the training data; determines
the accuracy level of the approximated function) [17]. Input to
the ε-SVR block is a vector of windowed MA samples (one
vector per audio file), MAw ∈ RNMA , and the output is speed
estimation vest.

C. Implementation details
1) Modified attenuation: In (2), we set α = v (discussed

in Section III-B), β = 0.05 and dCPA = 1.5 m. The selected
β value gave the most accurate speed estimation over a grid
of β values. The selected dCPA is close to the actual distance
between the vehicle and the sensor in the experiment. LMS
is based on the short-time Fourier transform (STFT) of the
input signal. For the STFT calculation, we use the Hamming
window with Nw = 4096 samples (≈ 0.093 s) and the
hop length of Nh = 0.27Nw = 1105 samples (≈ 0.025 s).
With 10-second audio files sampled at 44100 Hz, this setup
gives the time-length of STFT of 400 time frames. In the
LMS calculation, Nmel = 40 mel bands are used within the
frequency band [0, 16 kHz]. For the regression of η(t), as input
to NN we take LMS at instant t and Q = 12 preceding
and following instants with a stride of 3. The input space
dimensionality is hence M = (2Q + 1)Nmel = 1000. NN
has five layers, with 1000–200–50–10–1 neurons per layer,
respectively. This configuration is nearly minimal in the sense
that further increasing the number of layers and neurons per
layer would not yield any significant improvement in the
MA regression accuracy tested on the validation data. Mean
squared error loss is used, ReLU activation (last layer uses
linear activation), L2 kernel regularization with factor 10−3,
200 training epochs.

2) Speed estimation: The optimal window length and ε-
SVR parameters are NMA = 73, C = 10 and ε = 0.1, obtained
via a three-dimensional grid search. For training and validating
the ε-SVR model, same train-validation split is used as in the
MA regression.

Method implementation in Python is available for download
at http://slobodan.ucg.ac.me/science/vse/.

D. Evaluation
We carry out 10-fold cross-validation. In one round of cross-

validation, one fold (vehicle) is retained for testing, whereas
the remaining nine folds are used for training and validating
the model (train-validation split is described in Section II-
B). The cross-validation process is repeated 20 times and the
averaged results are presented in Section IV.

IV. EXPERIMENTAL RESULTS

We evaluate the speed estimation performance using root-
mean-square error (RMSE) of speed estimation

RMSE =

√
1

L

∑L

l=1
(vestl − vtruel )2, (4)

where vestl and vtruel represent the values of estimated and
true speed of the l-th measurement (audio file), respectively,
whereas L represents the number of measurements.

For the second evaluation metric, we will discretize the
considered speed interval [30, 105] km/h with a step of 10
km/h, starting from 25 km/h (first interval [25, 35), second
[35, 45) and so on). Then, the vehicle sound is classified into
these speed intervals (speed classes). The second metric will
be the accuracy of speed classification expressed as probability
of predicting a speed class that is ∆ classes away from the true

http://slobodan.ucg.ac.me/science/vse/
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Fig. 6. Predictions (in red) of the proposed MA feature (test data, one run). Four speeds per vehicle are presented (speed given top left).

class (∆ = 0 class prediction is correct, ∆ = ±1 predicted
and true class are adjacent ones, and so on).

In Fig. 6, we present one run of MA predictions of the
test data. Four speeds per vehicle are presented, with speed
given top left. The MA plots are centered with respect to
the predicted pass-by instant tPB. The lowest MA prediction
performance is obtained with Renault Scenic. One Renault
Scenic recording session took place on a windy day, which
resulted in a strong wind corrupting the sound of the vehicle
in around a half of the recordings. Moderate to strong wind
is present in some of Citroen, Mercedes, Peugeot 3008 and
Passat recordings.

Let us first consider the vehicle detection performance.
To that end, we calculate detection error as difference of
positions of the true and predicted MA maxima of the test data.
Histogram of detection error (all 20 runs included) is presented
in Fig. 7 (top). Detection error can be modeled as a normal
random variable, with mean and standard deviation presented
top right. The histogram also shows that the proposed method
is able to accurately detect the pass-by instant of vehicle, with
absolute detection error less than 0.2 s. In Fig. 7 (bottom),
we compare the predicted MA maxima values of the test
data when audio files i) contain vehicles (blue histogram)
and ii) do not contain vehicles (orange histogram) passing
by the sensor. To that end, we introduce additional 35 no-
vehicle sound files used only for vehicle detection testing. The
additional files were tested with NN regression models of all
vehicles in all 20 runs, 200 models in total. Histograms of the
vehicle and no-vehicle cases are separated by a narrow green
rectangle in Fig. 7 (bottom), i.e., all no-vehicle cases are to
the left of the rectangle, all vehicle cases to the right. The MA
magnitude threshold for vehicle detection should be set within
the rectangle.

RMSEs of speed estimation are presented in Table II, per
vehicle and average (bottom). The result of Renault Scenic
is notably worse than of the other vehicles, which is due to
a strong wind corrupting the sound, as noted above. If we
exclude Renault Scenic in testing, the average RMSE will be

Fig. 7. Top: Histogram of MA maxima detection offsets. Bottom:
Histogram of MA maxima values. Green rectangle separates no-vehicle
(orange) and vehicle (blue) cases.

6.95 km/h. On the other hand, Opel Insignia speed estimations
are exceptionally accurate.

Figure 8 represents 95% confidence intervals for the mean
of speed estimation. Renault Scenic is characterized by the
most significant deviation from the true speeds, as opposed
to Opel Insignia which follows the true speeds faithfully. A
general trend that can be observed in Fig. 8 is that speed
estimation at low and medium speeds is more accurate than at
higher speeds. More precisely, the proposed method tends to
underestimate higher speeds, which is evident from the plots
of Citroen, Mazda, Peugeot 3008, Peugeot 307, and Renault
Captur. A slight underestimation is present also with Opel.
The underestimation issue will be discussed shortly.

Table III presents the classification accuracies when speed
estimation is formulated as a classification problem. Column
∆ = 0 in Table III corresponds to correct class prediction
and |∆| ≤ 1 corresponds to a misclassification of maximum
one class. Renault Scenic has the lowest |∆| ≤ 1 probability,
whereas Opel Insignia outperforms all other vehicles, with a
near-perfect accuracy of 99.8%. Nissan and Mercedes are also
very accurate in terms of the |∆| ≤ 1 probability, however
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Fig. 8. 95% confidence intervals for the mean of speed estimation. Speed index on the horizontal axis represents the index of the recorded speed;
speeds are sorted into ascending order, as listed in Table I.

TABLE II
RMSE OF SPEED ESTIMATION

Vehicle RMSE [km/h]
Citroen C4 Picasso 6.48
Mazda 3 Skyactive 8.86
Mercedes AMG 550 7.56
Nissan Qashqai 6.53
Opel Insignia 3.97
Peugeot 3008 8.02
Peugeot 307 8.12
Renault Captur 6.22
Renault Scenic 11.34
VW Passat B7 6.76

Average 7.39

their ∆ = 0 probabilities are much less than Opel’s 74.3%.

TABLE III
PROBABILITY OF PREDICTING CLASS THAT IS ∆ CLASSES AWAY FROM

THE TRUE CLASS

Vehicle ∆ = 0 |∆| = 1 |∆| = 2 |∆| > 2 |∆| ≤ 1
Citroen C4 Picasso 61.3% 32.2% 6.5% 0.0% 93.5%
Mazda 3 Skyactive 41.6% 48.6% 8.8% 1.1% 90.2%
Mercedes AMG 550 48.7% 49.5% 1.8% 0.0% 98.2%
Nissan Qashqai 40.0% 59.5% 0.5% 0.0% 99.5%
Opel Insignia 74.3% 25.6% 0.2% 0.0% 99.8%
Peugeot 3008 48.5% 42.9% 4.8% 3.7% 91.5%
Peugeot 307 61.9% 24.8% 11.4% 1.9% 86.7%
Renault Captur 57.9% 36.2% 5.9% 0.0% 94.1%
Renault Scenic 42.9% 41.6% 11.1% 4.4% 84.4%
VW Passat B7 55.4% 40.9% 3.0% 0.7% 96.3%
Average 53.2% 40.2% 5.4% 1.2% 93.4%

Limitation of the proposed MA feature is that it is sym-
metric with respect to the pass-by instant. This symmetry,
however, is not present in the actual amplitude attenuation
of the pass-by sound, especially at higher speeds. Namely,
as the speed increases, noise due to air flow generated by

the boundary layer of the vehicle, perceived as a whoosh
sound, becomes an important factor in the overall loudness
of vehicle [5]. This noise is prominent immediately after the
vehicle passes by the microphone. Figure 4 (top) indicates
asymmetry in sound attenuation before and after the pass-by
instant. This asymmetry is even more pronounced at higher
speeds. Not taking into account this phenomenon in design of
the MA feature probably represents a reason of less accurate
estimation at higher speeds. Other reasons could be suboptimal
analytical form of the MA feature (2) and suboptimal selection
of the coefficients α and β in (2).

V. CONCLUSIONS
We proposed a method for vehicle speed estimation based

on the sound which a vehicle produces while passing by the
sensor. Our speed estimation uses a novel speed-dependent
feature predicted from the input audio. The method is trained
and tested on the collected dataset of audio-video recordings of
vehicles passing by the sensor. The method accurately detects
a vehicle and estimate its speed with an average error of 7.39
km/h. When formulated as a classification problem, i.e., when
the speed is discretized into 10 km/h intervals, the achieved
accuracy is 53.2% for correct interval prediction and 93.4%
when misclassification of one interval is allowed.

The proposed method tends to underestimate higher speeds.
Therefore, the future research will aim to improve the esti-
mation accuracy at higher speeds by modifying the proposed
feature and/or by introducing additional features. In addition,
data augmentation techniques will be considered to improve
the estimation accuracy, as well as extending the dataset by
introducing new vehicles.
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[10] Hüseyin Göksu, “Vehicle speed measurement by on-board acoustic
signal processing,” Measurement and Control, vol. 51, no. 5-6, pp.
138–149, 2018.
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“Neural network-based acoustic vehicle counting,” in 29th European
Signal Processing Conference (EUSIPCO 2021), 2021.

[17] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library for sup-
port vector machines,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 3, pp. 1–27, 2011.
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